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Abstract

This paper presents a low-cost miniaturized microstrip patch antenna (MPA) designed for on-body applications at a frequency of 2.45 GHz.
The antenna is based on the coupled-microstrip principle using FR-4 material. The microstrip transmission line feeding method is used to
easily integrate the antenna into the sensor chip on the same plane. The antenna has a gain of 2.28 dBi, a bandwidth of 2.62%, an efficiency
of 46.5%, and overall dimensions of 48.6x48.6x1.6 mm3. To evaluate the performance of the proposed antenna, it is compared with three
different antenna versions, considering the impact of the human body on the antenna and the specific absorption rate (SAR) of the human
body. The proposed antenna shows excellent compliance with the requirements for on-body sensor antennas.

Keywords: Miniaturized Antenna, Microstrip Antenna, SAR, On-body Sensors, Microstrip Feeding.

1. Introduction

Sensors that measure biometric parameters on the human
body play an increasingly important role in modern life [1-2].
These sensors need to be compact so that patients feel
comfortable wearing them on their bodies all the time.
Consequently, the antennas inside these sensors also need to
be increasingly miniaturized. Microstrip patch antennas
(MPAs) are used in various fields such as GPS (Global
Positioning System), satellites, reader antennas in ETC
(Electronic toll collection) systems, element antennas in base
stations, and Wi-Fi [3-8], due to their ease of fabrication and
low cost. Therefore, they are also applied to on-body sensors.
Some methods for miniaturizing MPAs include utilizing a
substrate with a high relative permittivity (er), slot-cutting in
the radiating patch, reshaping the ground plane and antenna,
shorting and folding the patch antenna, and the use of
metamaterials [3-4]. The length of the patch is inversely
proportional to the square root of the relative permittivity (er).
However, using a substrate with high relative permittivity
increases surface wave excitation within the substrate,
resulting in lower bandwidth and decreased radiation
efficiency.

A MPA can also be miniaturized by altering the shape of the
patch or adding slots. However, miniaturized MPAs suffer
from higher ohmic losses, leading to lower radiation
efficiency. While this method is widely used and offers
several degrees of miniaturization, it lacks a general design
methodology. Most designs based on this method have low
radiation efficiency but provide wider operating bandwidths
when using slots [11].

MPAs can also be miniaturized by modifying their ground
plane, such as inserting various types of slots. Properly
designed slots increase the current path within the patch area,
lowering the resonant frequency and reducing the size.
However, using defected ground structures (DGS) usually
results in lower efficiency and narrower operating bandwidths
[12]. Additionally, re-tuning the antenna is often needed to
compensate for the shift in resonant frequency due to

alterations in ground currents, especially if the DGS is close
to resonant structures. This method may also increase the back
lobe, leading to a higher Specific Absorption Rate (SAR).

Although metasurfaces have been successful in reducing
antenna size, this comes at a substantial cost, including the use
of complex materials, very narrow operating bandwidths, low
radiation efficiency, and increased antenna thickness.

Combining different antenna miniaturization methods yields
better results than using these methods independently.
According to [13], combining slot-cutting with metamaterials
or shorting pins with metamaterials is proposed to improve
antenna performance, although it slightly increases the
antenna's thickness.

In [14], a novel method for miniaturizing microstrip patch
antennas using coupled microstrip and shorting pins was
proposed at 8.45 GHz. The antenna, fed by a coaxial cable,
had a single layer, making it challenging to integrate into on-
body sensors on the same plane. Additionally, it utilized the
Rogers4330 substrate, which is not commonly used for
electronic circuits. Therefore, a new version of this antenna
using a low-cost FR-4 substrate at 2.45 GHz is proposed to
make it more suitable for on-body applications. In the new
version, the microstrip feeding method is applied for easier
integration into on-body sensors. The body effect on the
antenna and the Specific Absorption Rate (SAR) will also be
considered. The remainder of this paper presents the design
principles of the proposed antenna using the coupled-
microstrip method and discusses its performance.

2. Antenna design

1.1. Coupled microstrip antenna

The proposed antenna, as shown in Figure 1(d), uses a low-
cost FR-4 substrate instead of Rogers4330 and operates at a
frequency of 2.45 GHz, compared to the antenna in [14].
Notably, the antenna is fed by a microstrip transmission line
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instead of a coaxial cable, making it easier to integrate with
sensor circuits. To evaluate the performance of the proposed
antenna against the antenna in [14], the performance of
antenna versions V1, V2, and V3, as shown in Figures 1(a),
1(b), and 1(c), respectively, is discussed. The dimension
parameters are given in Table 1. The antennas in these
versions are smaller than the original V1 antenna.

Table 1: Dimension parameters

Parameters Proposed V1 V2 V3
[mm] (V0)

w 24.6 28.2 24.8 24.8
Wy 48.6 52.2 48.8 48.6
It 11 7 7
Wi 2.86 2.86
0 0.3 03 03
02 0.3
d 4.5 49 49
r 0.5 0.5 0.5
If 12 12

Table 2: A comparison between versions of the proposed antenna

Parameters Proposed V1 V2 V3
@2.45 GHz
S11[dB] -22.2 -19.2 -29.7 -6.5
Peak gain [dBi] 2.28 2.7 2.52 0.84
BW[%] 2.62 31 2.93 0
Efficiency [%] 46.5 44.3 48.1 42
HPBW [degree] 101.5 96.3 101.1 101.7
Back lobe [dB] -8.7 -11.8 -8.6 -8.7

First, a simple square patch antenna (V1) fed by a coaxial
cable is simulated as shown in Figure 1(a). This is the
original antenna for comparison in the next sections. The
second version (V2) has a structure similar to the antenna in
[14], as shown in Figure 1(c). However, the FR-4 substrate
is used instead of the Rogers4330 substrate to reduce
manufacturing costs and is designed to operate at 2.45 GHz.
FR-4 is one of the most low-cost and popular materials used
for circuit prototypes, but it is not ideal for antenna
fabrication due to its high tangent loss (tand = 0.025).

V2 incorporates gaps in the patch to divide it into smaller
sections and adds shorting pins at the edges to function as
shorting walls. V2 operates in the TM10 mode [14].
Compared to V1, the length W of V2 is reduced to 24.8 mm,
and the efficiency increases by approximately 3%. However,
the gain and bandwidth (BW) decrease. When g; increases,
the resonant frequency shifts to a higher band, as shown in
Figure 2. The optimal value of gi1 is 0.3 mm for practical
fabrication and balancing the size and gain of the antenna.
The radius of the pins affects the resonant frequency and
gain of the antenna. As the radius increases, the gain
improves, but the operating frequency shifts to a higher band,
as shown in Figure 3.
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Figure 1: Structure of the proposed antenna: (a) Version 1 (V1), (b) Version
2 (V2), (c) Version 3 (V3), and (d) The proposed antenna.
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Figure 2: Effect of g; on the antenna V2: (a) S11, and (b) Gain.
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Figure 3: Effect of ry, on the antenna V2: (a) S11, and (b) Gain.
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Figure 4: The performance of the antennas V1, V2, and V3 compared to the
proposed antenna in (a) S11, (b) gain, and (c) efficiency.

Figure 5: Radiation pattern of the proposed antenna at 2.45 GHz.

To facilitate the integration of the antenna into the on-body
sensor circuit on a single plane, the coaxial feeding method is
replaced with the microstrip feeding method. The input
impedance undergoes significant changes when transitioning
from V2 to V3, as illustrated by the dashed blue lines in Figure
4, due to the alteration in the antenna's input impedance.
Subsequently, the feeding line is adjusted to match the
antenna's impedance, as depicted in Figure 1(d). A U-shaped
slot is employed to create a coupling between the feeding
microstrip line and the square patch.

Figure 4 shows the simulation results for S11, gain, and
efficiency of the four antennas in Figure 1. The size of the
radiating part decreases across the antenna versions. However,
the bandwidth also decreases. V1 has the largest size and the
lowest efficiency at 2.45 GHz, but it has the highest gain and
bandwidth. Meanwhile, versions V2, V3, and the proposed
antenna have higher efficiency but slightly reduced
bandwidth and gain. Detailed comparisons between the
versions are presented in Table 2. Figure 5 shows the radiation
pattern of the proposed antenna in free space, with a peak gain
of 2.28 dBi.

1.2. Body effect

The body effect can influence various aspects of an antenna's
operation, including its radiation pattern, impedance,
efficiency, and resonant frequency. This effect is especially
relevant in wearable and mobile devices, such as
smartphones, body-worn sensors, and other wireless
communication systems, where antennas are close to the
human body [15-17].

To evaluate the impact of the human body on the performance
of the proposed antenna, this section conducts simulations to
assess the antenna's performance when placed on a simplified
human body model [18], as shown in Figure 6. The detailed
electrical parameters of the body model tissues are provided
in Table 3 [19].

By varying the distance h between the antenna and the human
body model from 1 mm to 10 mm, changes in S11, gain are
analyzed. From the simulation results in Figure 7(a), it can be
observed that when the antenna is close to the human body,
the resonant frequency shifts to a lower frequency. This shift
is less pronounced as the antenna is placed further from the
body. To compensate for the frequency shift, the antenna
should have a wide bandwidth. In this study, the width W is
adjusted from 24.6 mm to 23.35 mm in the case of h = 1 mm,
as shown in Figure 8.

The antenna gain increases as h increases, as shown in Figure
7(b). Especially, the gain reduces significantly compared to it
in free space. This is because the human body absorbs more
electromagnetic waves when the antenna is closer to the body.
Therefore, on-body antennas should be placed as far from the
body as possible to avoid energy absorption by the body.

Antenna
T I
h
Skin— 2 mm
Fat — 4 mm
Bone — 17.5 mm
y X /

Simplified body model
Figure 6: The proposed antenna on the body simplified model.

Table 3: Dielectric properties of tissues

Tissue | Permittivity | Conductivity Loss Mass
() (o) Tangent density
[S/m] (tan §) [g/cmq]
Skin 38-42 1.46 0.18 1.1
Fat 5.69 0.03 0.005 0.92
Muscle 52.7 1.73 0.33 1.06
Bone 12.45 0.14 0.01 1.85
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Figure 7: The performance of the proposed antenna in (a) S11 and (b) the
gain of the antenna on the simplified body model.
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Figure 8: Simulated S11 of the proposed antenna on the simplified body

model after W is adjusted shorter with h =1 mm.

1.3. SAR calculation

Specific Absorption Rate (SAR) is a measure of the rate at
which energy is absorbed by the human body when exposed
to an electromagnetic field. It is typically expressed in watts
per kilogram (W/kg) and is used to ensure that devices are
safe for human use. SAR values are determined by the power
density of the electromagnetic field (|E[*) and the properties
of the tissue absorbing the energy [20-21] as shown in
Equation (1).
o|El
SAR = (@)
Y2,

Where ¢ and p represent the electric conductivity (S/m) and
mass density (kg/m3) of the medium, respectively. The limits
on SAR levels to protect public health are given in Table 4
[21].
In this section, we perform SAR calculations using CST
Studio Suite 2019 software [22] with the assumption that the
sensor power is around several milliwatts (mW), which is a
common power level for sensors on the human body [23]. In
this simulation case, we consider h = 1mm, and the
transmitting power is 0 dBm. The maximum SAR result
shown in Figure 9 is 0.000546 W/kg with an average mass of
10 g. This result satisfies both standards in Table 4.

Table 4: SAR limits for public health

Standard SAR limit [W/Kg] Averaging mass for SAR
ICNIRP 2.0 (f<10 GHz) 10 g of tissues
FCC/ANSI 1.6 (f<6 GHz) 10 g of tissues

3. Conclusion

This paper presented an improvement of the antenna in [14].
The proposed antenna is easily integrated into on-body
sensors thanks to microstrip line feeding combined with the
coupling method. The size of the proposed antenna is
significantly reduced while the gain and the efficiency remain.
This result will be the basis for research on miniaturizing
antennas for body-worn sensors. Additionally, the effect of
the human body is evaluated by simulating the antenna on a
simplified body model. The results show that the closer to the
body, the more electromagnetic wave energy is absorbed, and
the resonant frequency shifts to a lower frequency. This result
can be used for future research to mitigate the impact on the
human body. The proposed antenna has a SAR index that
meets health safety standards. In the future, the proposed
antenna will be optimized, fabricated, and measured.
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July 5, 2024 approving the list of scientific journals to be scored in 2024. Accordingly, the
Specialized Journal of Measurement and Control The Vietnam Automation Association's Control
and Automation score will be increased from 0-0.75 to 0-1.0 points from 2024.
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